Re-Normalization of Calculation of Compound APFs (Area Peak Factors)

Special case of measuring oxygen in Si-SiO2 nano-particles (calculation of APF for pure elements when trace elements vary in precision)

To correct for changes in peak shape or peak shift between the standard and unknown, the compound Area Peak Factor is typically calculated from the pure boride, carbide, nitride or oxide end-member APFs (Donovan, 1991) by summing the weight fraction of the element affecting the peak shape or shift of the specified element. This is typically performed as so:

$$APF_{Comp} = \sum APF_{j} * \frac{W_{j}}{Sum_{Partial}}$$

Where: APF_j is the binary (end-member) APF for elements other than the affected

element

 W_i is the weight fraction for elements other than the affected element

 $Sum_{Partial}$ is the sum of all elements other than the affected element

This calculation of compound APFs works well on the typical calculation when the affecting element is present is large concentrations as shown here in an oxygen measurement of a magnesium calcium silicate:

ELEM:	0	Si	Al	Ca	Na	K	P	Cl	Mg	SUM
91	44.266	25.925	.016	18.489	.015	.000	.000	.000	11.192	99.903
92	44.289	25.925	.016	18.489	.015	.000	.000	.000	11.192	99.926
93	44.016	25.925	.016	18.489	.015	.000	.000	.000	11.192	99.653
94	44.259	25.925	.016	18.489	.015	.000	.000	.000	11.192	99.896
95	44.172	25.925	.016	18.489	.015	.000	.000	.000	11.192	99.809
AVER:	44.200	25.925	.016	18.489	.015	.000	.000	.000	11.192	99.837
SDEV:	.112	.000	.000	.000	.000	.000	.000	.000	.000	
SERR:	.050	.000	.000	.000	.000	.000	.000	.000	.000	
%RSD:	.3	.0	.0	.0	.0	.0	.0	.0	.0	
PUBL:	44.316	25.925	.016	18.489	.015	n.a.	n.a.	n.a.	11.192	99.953
%VAR:	26	.00	.00	.00	.00	.00	.00	.00	.00	
DIFF:	116	.000	.000	.000	.000	.000	.000	.000	.000	
STDS:	12	0	0	0	0	0	0	0	0	
STKF:	.2957	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
STCT:	4817.4	.0	.0	.0	.0	.0	.0	.0	.0	
UNKF:	.2076	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
UNCT:	3382.0	.0	.0	.0	.0	.0	.0	.0	.0	
UNBG:	39.5	.0	.0	.0	.0	.0	.0	.0	.0	
ZCOR:	2.1292	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
KRAW:	.7020	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
PKBG:	86.97	.00	.00	.00	.00	.00	.00	.00	.00	
APF:	1.021									

However, in the case of trying to analyze a thin film of Si/SiO2 nano-particles it will be necessary to perform a correction due to the peak shift of Si K α as Si is increasingly oxidized because of the large peak shift of Si K α . In other words the APF for Si K α in the presence of oxygen needs to be calculated based on the amount of oxygen present relative to Si.

This means that the line below should be added to the EMPAPF.DAT file to perform the correction for Si to SiO2 peak shift where the compound APF is calculated based on the amount of oxygen present in the sample.

"si" "ka" "o" 1.170 "SiO2/Si/PET/8.75"

However, in this case since the compound APF is calculated based on the elements other than the affected element (Si), in pure Si metal the calculation is very unstable because the other trace elements (oxygen) can cause the normalized contribution of each fractional APF to vary wildly.

That is, a compound with major oxygen such as SiO2 will be calculated correctly as shown here (note the example below is performed with an additional correction for O K α in the presence of Si relative to MgO):

ELEM:	0	Si	S	Fe	Cl	Cu	SUM
230	54.109	47.224	005	038	.003	.303	101.595
231	54.446	47.710	002	.076	.030	073	102.188
232	54.116	47.659	025	.042	009	040	101.744
AVER:	54.224	47.531	011	.026	.008	.063	101.842
SDEV:	.193	.267	.012	.059	.020	.208	
SERR:	.111	.154	.007	.034	.011	.120	
%RSD:	.4	.6	-116.7	221.3	244.8	329.0	
PUBL:	53.255	46.740	n.a.	n.a.	n.a.	n.a.	99.995
%VAR:	1.82	1.69	.00	.00	.00	.00	
DIFF:	.969	.791	.000	.000	.000	.000	
STDS:	12	514	730	730	285	529	
STKF:	.2962	1.0000	.5369	.4239	.0624	.9972	
STCT:	7658.5	7405.4	2705.1	1758.7	392.8	886.0	
UNKF:	.3529	.4363	0001	.0002	.0001	.0005	
UNCT:	9127.0	3230.7	5	.9	.4	.4	
UNBG:	119.3	11.2	2.1	8.1	3.3	10.2	
ZCOR:	1.5363	1.0895	1.1826	1.2611	1.1949	1.3436	
KRAW:	1.1917	.4363	0002	.0005	.0011	.0005	
PKBG:	77.53	290.10	.81	1.14	1.15	1.04	
APF:	1.061	1.170					

But in the case of the pure Si metal, because the APF is summed based on the normalized partial sum of the elements affecting the peak shape or shift (but not the affected element), the presence of minor and trace elements such as the oxygen can cause the correction to become unstable as seen here:

ELEM: BGDS: TIME:	0 EXP 20.00	Si LIN 20.00	S HIGH 20.00	Fe LIN 20.00	Cl LIN 20.00	Cu LIN 20.00	
ELEM:	0	Si	S	Fe	Cl	Cu	SUM
110	.386	114.714	.032	.012	.034	.009	115.187
111	.383	115.568	.000	.045	.019	034	115.982
112	.326	105.140	.013	004	.010	.675	106.161
AVER:	.365	111.807	.015	.017	.021	.217	112.443
SDEV:	.034	5.790	.016	.025	.012	.398	
SERR:	.019	3.343	.009	.014	.007	.230	
%RSD:	9.2	5.2	106.8	142.9	56.5	183.5	
PUBL:	n.a.	100.000	n.a.	n.a.	n.a.	n.a.	100.000
%VAR:	.00	11.81	.00	.00	.00	.00	
DIFF:	.000	11.807	.000	.000	.000	.000	
STDS:	12	514	730	730	285	529	
STKF:	.2962	1.0000	.5369	.4239	.0624	.9972	
STCT:	7661.9	7402.8	2686.5	1754.9	384.9	898.4	

	0010	1 1170	0001	0001	0000	0017
UNKF	.0016	1.11/0	.0001	.0001	.0002	.001/
UNCT:	42.6	8269.0	.6	.6	1.1	1.5
UNBG:	47.0	23.5	1.8	12.0	3.7	13.3
ZCOR:	2.2167	1.0010	1.2505	1.2069	1.2313	1.2787
KRAW:	.0056	1.1170	.0002	.0003	.0028	.0017
PKBG:	1.91	352.54	1.33	1.05	1.30	1.16
APF:	1.070	1.117				

Note that the APF for O K α is fine (major Si is present), but the APF for Si K α in oxygen is unstable due to the high variability of the oxygen measurement of the native oxide layer during the iteration.

However, a normalization of the compound APF can be performed by re-normalizing the compound APF based on the partial sum of the elements affecting the calculation. In the case of pure Si, the partial sum is very low and the following expression causes the contribution to be re-scaled based on that small partial sum:

$$APF_{Norm} = 1 + \frac{\left(APF_{Comp} - 1\right)}{\frac{1}{\left(\frac{Sum_{Partial}}{W_{Affected}}\right)}}$$

Note that this correction is only applied when the absolute value of the scaling factor :

$$\frac{1}{\left(\frac{Sum_{Partial}}{W_{Affected}}\right)}$$

is greater than or equal to one to prevent the correction from being over applied to small concentrations. When this correction is implemented the calculation proceeds which much greater stability:

ELEM:	0	Si	S	Fe	Cl	Cu	
BGDS:	EXP	LIN	HIGH	LIN	LIN	LIN	
TIME:	20.00	20.00	20.00	20.00	20.00	20.00	
ELEM:	0	Si	S	Fe	Cl	Cu	SUM
110	.386	100.804	.032	.012	.034	.009	101.277
111	.383	99.914	.000	.045	.019	034	100.327
112	.326	99.786	.013	004	.010	.675	100.807
AVER:	.365	100.168	.015	.017	.021	.217	100.804
SDEV:	.034	.554	.016	.025	.012	.398	
SERR:	.019	.320	.009	.014	.007	.230	
%RSD:	9.2	.6	106.8	142.9	56.5	183.5	
PUBL:	n.a.	100.000	n.a.	n.a.	n.a.	n.a.	100.000
%VAR:	.00	.17	.00	.00	.00	.00	
DIFF:	.000	.168	.000	.000	.000	.000	
STDS:	12	514	730	730	285	529	
STKF:	.2962	1.0000	.5369	.4239	.0624	.9972	
STCT:	7661.9	7402.8	2686.5	1754.9	384.9	898.4	
UNKF:	.0016	1.0006	.0001	.0001	.0002	.0017	
UNCT:	42.6	7407.3	.6	.6	1.1	1.5	
UNBG:	47.0	23.5	1.8	12.0	3.7	13.3	
ZCOR:	2.2161	1.0011	1.2504	1.2069	1.2313	1.2787	
KRAW:	.0056	1.0006	.0002	.0003	.0028	.0017	
PKBG:	1.91	316.09	1.33	1.05	1.30	1.16	

APF: 1.070 1.001 ---- ----

Note that the APF for Si K α is very close to 1.0 which makes sense since the contribution of oxygen is small. When SiO2 is calculated (using Si as the primary standard again) the calculation is also reasonable as before and the Si Ka APF in oxygen is similar to the end-member APF as expected:

ELEM:	0	Si	S	Fe	Cl	Cu	
BGDS:	EXP	LIN	HIGH	LIN	LIN	LIN	
TIME:	20.00	20.00	20.00	20.00	20.00	20.00	
ELEM:	0	Si	S	Fe	Cl	Cu	SUM
122	52.891	47.029	.000	.014	.007	105	99.837
123	52.850	46.723	018	.012	003	188	99.376
124	52.686	46.699	.028	057	018	.022	99.360
AVER:	52.809	46.817	.004	010	005	090	99.524
SDEV:	.109	.184	.023	.040	.013	.106	
SERR:	.063	.106	.013	.023	.007	.061	
%RSD:	.2	.4	655.8	-390.2	-272.4	-117.4	
PUBL:	53.255	46.740	n.a.	n.a.	n.a.	n.a.	99.995
%VAR:	84	.16	.00	.00	.00	.00	
DIFF:	446	.077	.000	.000	.000	.000	
STDS:	12	514	730	730	285	529	
STKF:	.2962	1.0000	.5369	.4239	.0624	.9972	
STCT:	7640.1	7419.2	2676.1	1746.8	397.9	891.2	
UNKF:	.3429	.4300	.0000	0001	.0000	0007	
UNCT:	8846.1	3190.3	.1	3	2	б	
UNBG:	113.8	12.5	2.0	8.9	3.3	9.7	
ZCOR:	1.5400	1.0888	1.1833	1.2615	1.1955	1.3439	
KRAW:	1.1579	.4300	.0001	0002	0006	0007	
PKBG:	78.89	259.32	1.35	.97	.94	.94	
APF:	1.062	1.170					

With this new compound APF normalization, the compound area peak factor correction for peak shape and shift works even in end-member situations when the trace elements varying in precision dominate the correction.

John Donovan

Appendix A

The code for this new correction is show here with the new APF normalization code bolded:

```
' Correct counts on unknown for peak shape changes using APF's (Area Peak
' Factors). Sum weight fraction of APF from each absorber. The sum of APFs
' is calculated from the element weight fractions not including the affected
' element.
If Not sample(1).IntegratedIntensitiesUseFlag% Then
If UseAPFFlag And UseAPFOption% = 0 Then
RowUnkAPFCors!(linerow%, chan%) = 0#
temp! = 0#
For j% = 1 To sample(1).LastChan%
If chan% <> j% Then temp! = temp! + analysis.WtPercents!(j%) ' calculate partial sum
(not including affected element)
Next j%
If temp! <> 0# Then
                                    ' was "If temp! > 0# Then" but caused problem when
temp was slightly negative
For j% = 1 To sample(1).LastChan%
If chan% <> j% Then
Call EmpLoadMACAPF(Int(2), sample(1).AtomicNums%(chan%), sample(1).XrayNums%(chan%),
sample(1).AtomicNums%(j%), apf!, tstring$)
If ierror Then Exit Sub
RowUnkAPFCors!(linerow%, chan%) = RowUnkAPFCors!(linerow%, chan%) + apf! *
analysis.WtPercents!(j%) / temp! ' sum APFs based on relative abundance
End If
Next j%
' Perform APF normalization based on partial sum (added 02/22/2009 to deal with Si Ka
peak shift Si -> SiO2)
If analysis.WtPercents!(chan%) <> 0# Then
temp3! = 1# / (temp! / analysis.WtPercents!(chan%))
                                                           ' calculate scaling factor
based on partial sum
If Abs(temp3!) >= 1# Then RowUnkAPFCors!(linerow%, chan%) = 1# +
(RowUnkAPFCors!(linerow%, chan%) - 1) / temp3!
End If
uncts!(chan%) = uncts!(chan%) * RowUnkAPFCors!(linerow%, chan%) ' perform compound
APF correction to intensities
End If
End If
' Correct using "specified" APF factor for this emitter (and not assigned as the
standard)
If UseAPFFlag And UseAPFOption% = 1 Then
If sample(1).Type% = 2 Or (sample(1).Type% = 1 And sample(1).number% <>
sample(1).StdAssigns%(chan%)) Then
uncts!(chan%) = uncts!(chan%) * sample(1).SpecifiedAreaPeakFactors!(chan%)
End If
End If
End If
```