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Chapter Three 
 

The Generation and Nature of X-rays 

 
 

3. Introduction 

We have come to regard x-rays as an important component of electromagnetic radiation.  
Today, x-rays are used in a wide variety of applications ranging from sophisticated high-energy-
physics and astrophysical projects, to the routine examination of "carry-on luggage" in all airports. 
 In all applications, the x-rays are generated by the bombardment of matter with high-energy 
particles, usually electrons.  For the purposes of this course it is necessary to have a relatively good 
understanding of x-rays  -- not only in terms of how they are generated, but also in terms of how 
they interact with their surrounding atoms, and how they can be detected and utilized for 
informational purposes. 

3.1 A Brief History 

The term x-ray was first proposed in 1885 by its discoverer, Wilhelm Roentgen, Professor 
of physics in Würzburg, Germany. In the course of his research, Roentgen noticed effects of 
“invisible radiation” while experimenting with electron beams produced by recently developed 
cathode ray tubes.  The effects he noted included the production of short-wavelength and visible 
radiation that could be observed on exposure of photographic emulsions.  The properties of the 
invisible (short-wavelength) radiation also included high degrees of transparency through all 
materials, and straight-line trajectories that are uninfluenced by magnetic fields. 

Subsequent research by Winkelmann and Straubel discovered fluorescence of secondary 
x-rays by "primary" x-rays.  Haga and Wind discovered the diffraction of x-rays by solid materials, 
and concluded that the wavelength of such radiation must be on the order of 10-10 meters.  Laue 
demonstrated with the dispersion of x-rays that their wavelength must be on the order of atomic 
dimensions.  Subsequently, the wavelengths of characteristic x-ray radiation were measured to be 
in the range of 10 -8 to 10 -11 meters, and the dimensional unit angstrom (Å=10 –10 m) was 
introduced.1 

                                                 

1 Although not recognized today as a international unit, the angstrom is still used when referring to inner-
atomic distances and x-ray wavelengths. 
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The theory of diffraction of x-rays, originally proposed by Laue, was conclusively 
demonstrated by W.H. Bragg and W.L. Bragg in 1913 by obtaining the first x-ray diffraction 
pattern a sodium chloride crystal (for which they won the Nobel Prize). 

Meanwhile, H.G.J. Moseley (1913) was researching the characteristics of x-ray emission 
from different target materials. He noticed a systematic progression of x-ray wavelengths with 
increasing atomic number of the material generating the radiation.  Based on this regularity, the 
previously unknown elements hafnium and rhodium were discovered with x-ray spectral analysis.  

As is common in science, the experimental observation of important phenomena occurred 
before it could be explained fully by theory.  Max Planck in 1900 first began to analyze atomic 
structure in terms of the then-developing quantum theory of energy.  Planck proposed that an 
oscillating (ionized) atom could not have any arbitrary energy, but rather only certain selected 
energy values (quanta) were possible.  Planck reasoned that if only certain energy levels were 
possible, there ought to be a relationship between the energy of an atom undergoing change and 
both the energy and wavelength of the radiation emitted during the process.  He suggested that the 
wavelength of electromagnetic radiation, , its frequency, , and its energy, E, are related: 

E =  nh  =  
nhc
  

(electron volts)         eq.  3-1 

where n is a positive integer, h is Plank's constant (6.62610-34Joule·sec), and c is the speed of 
light (3.0108meter/sec).  In x-ray physics, E is measured in electron volts, eV, and is a unit of 
energy (1.602110–19 J/eV), such that 

 
E  =  hc =  12,397  

(eV·Å)  eq.  3-2 

An often asked question is the difference between volts and electron volts.  They are often 
equated, i.e., if an electron is exposed to a potential of 10kV, it is said to have 10keV worth of 
energy.  But strictly speaking, the volt is a unit of potential energy, and is not related to kinetic 
energy (or work), unless a charged particle (e.g., an electron with charge e, the elementary charge) 
is accelerated by a potential difference. 

The first application of the quantum theory of atomic structure was made in 1913 by Niels 
Bohr (the same year in which the Braggs published their paper on x-ray diffraction). Bohr 
developed a model of the hydrogen atom, which allowed him to explain why the observed 
frequencies (i.e., wavelengths) of energy emitted obeyed simple relationships.  Although it was 
later shown to be too simplistic, Bohr's model allowed him to calculate the energies of the allowed 
states for the hydrogen atom.  Subsequent refinements in the theory of atoms by Heisenberg, De 
Broglie and Schrödinger have resulted in our modern view of quantum mechanics.  For our 
purposes, quantum mechanics are important to the extent that they describe the transitions that are 
possible during the interaction of highly energetic, beam electrons and electrons within target 
atoms with great accuracy.  The principle quantum numbers are summarized below: 
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1. The principle quantum number (n):  The principle quantum number (n) can include any 
positive integral value.  It determines the major energy level of an electron.  It is 
designated K, L and M for n = 1, 2 and 3 respectively.  The maximum number of 
electrons allowed is 2n2. 

 
2. The azimuthal momentum quantum number (l):  The azimuthal or angular momentum 

number can be considered to represent sub-shells within the major energy levels. The 
sub-shells correspond to "orbitals". Higher values of l correspond to greater angular 
momentum (mvr).  l may assume integer values from 0 to n-1.  The orbitals are s, p, d 
and f for l = 0, 1, 2 and 3 respectively.  The orbitals have distinctive shapes. The 
maximum number of electrons allowed is: s = 2, p = 6, d = 10 and f = 14. 

 
3. The magnetic quantum number (m): An electron with angular momentum generates a 

magnetic field.  m can assume any integer from -l to +l. 
 
4. The spin quantum number:  A small "particle", like an electron, spinning on its own 

axis also behaves as a small magnet, hence the electron itself has an intrinsic magnetic 
property.  We say that the electron has a spin and describe it as being either +1/2 or -1/2. 

 
 Summary for K, L and M Shells 

maximum 
n  l Orbital  m s # (e- )  
 
1  0 1s  0 +1/2,  -1/2 2 
 
2  0 2s  0 +1/2,  -1/2 2 
2  1 2p -1, 0, +1 +1/2,  -1/2 6 
 
3  0 3s  0 +1/2,  -1/2 2 
3  1 3p -1, 0, +1 +1/2,  -1/2 6 
3  2 3d -2,-1,0,+1,+2 +1/2,  -1/2 10 
 

The specific quantum numbers assigned to the electrons are determined by thermodynamic 
considerations that require the occupation of states having the lowest energies first, and the Pauli 
Exclusion Principle, which forbids more than one electron in an atom to have the same four 
quantum numbers (by definition).  In addition to considering the orbitals of an atom, it is, from an 
energetic point of view, necessary to take into account the influence that interactions between the 
magnetic moments of the spin and the orbital motion of an electron have on its energy.  In order to 
describe the consequences of these spin-orbit interactions, it is convenient to define a new quantum 
number:  

 j  l ± s 
 
In other words, "j" is the vector sum of l and s. 
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Shell K L M 

n 1 2 3 

l 0 0 1 0 1 2 

j 1/2 1/2 1/2 3/2 1/2 1/2 3/2 3/2 5/2 

E K L(I) L(II) L(III) M(I) M(II) M(III) M(IV) M(V) 

 
 

Notice that in this table the usual electronic picture of an atom is not changed.  The 
importance of this table is that it shows different energy levels within each of the various orbitals.  
One can not only distinguish the s from the p electrons by their l value (l=0 for s, and l=1 for p), 
but one can also distinguish two kinds of p electrons depending on whether j is greater than, or less 
than l. Notice, for example, that there are three distinct energy levels for the L electrons (LI , LII , 
and LIII) and five different energy levels for the M electrons. 

Atoms release energy when they undergo transitions from a higher energy state to a lower 
energy state.  For example, if an electron moves from the LIII energy level to the K state, a 
quantum of energy equal to (EK - EL(III)) is released. There are many possible transitions, dependent 
only on the availability of electrons in a particular shell (i.e., on the element's atomic number).  
Some of the transitions are, however, more probable than others, and some are in fact prohibited.  
The Pauli Exclusion Principle, when applied to energy transitions, predicts that some transitions 
are not possible, thus leading to a set of "selection rules".  The rules that predict commonly 
observed transitions (and forbid others) are 

 
 n  <  0,     l  =  ± 1,     j = 0 ± 1 
 

The change in n allows only a direction of lower energy in integer amounts of quanta; a 
change in l must be either plus or minus 1, and a change in j must be -1, 0 or +1.  Examination of 
the above table demonstrates, for example that the transition from LI to K does not occur because 
both of these electrons are s electrons and hence there is no change in l . 

3.2 Generation of x-rays 

Energy transitions in atoms can only occur if the atom is first perturbed by some "external" 
source of energy.  Normally, atoms exist in their lowest energy, or ground state.  If an atom is 
"excited" by an input of energy, it is thermodynamically unstable and will respond by electron 
transitions that result in a lowering of the atom's energy.  For our purposes, excitation of atoms 
results from bombardment of the target (specimen) with high-energy electrons in the incident 
beam.  The most energetic of transitions are those involving the K-shell electrons since they are the 
most tightly bound to the nucleus. 
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Figure 3-1 illustrates excitation of an 
atom by ejection of a K-shell electron by an 
inelastic collision with an electron from the 
beam. In order to excite an atom by ejecting 
a K-shell electron (to a distance outside the 
atom), the incident beam must have an 
energy greater than the energy required to 
remove a K-shell electron (EK).  If the 
incident beam has sufficient energy, and if 
an inelastic event occurs between an 
incident electron and a K-shell electron, then 
the K-shell electron can be ejected from the 
atom. The incident beam electron loses a 
quantum of energy equal to that required to 
eject the K-shell electron, and is scattered 
with little change in its trajectory. 

The process of ejecting a K-shell 
electron creates an electron hole in the K 
shell and raises the energy level of the atom 
to the "K-state".  This energy level is 
thermo-dynamically unstable and the atom 
will instantaneously respond by filling the 
electron hole with another electron from an 
outer orbital.  The nearest electrons are in the L shell, and hence are the most probable electrons to 
fill the electron hole. The process of an electron moving from the L shell to the K shell is called the 
K transition.  If the L electron is in the LIII energy state, the transition is called the K1 transition. 
 Energetically, the filling of the electron hole by an LIII  electron lowers the energy state of the atom 
by 

 
 E(K1)  =  EK  -  EL(III)    
 

 
 

Figure 3-1   Schematic diagram illustrating the ejection of an 
K-shell electron and production of an unstable electron hole. 
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3.2.1 Characteristic x-rays 

Owing to the fact that energy can 
neither be created nor destroyed, the energy 
change for this process must be released in 
some other form.  The energy released is given 
off in the form of an x-ray photon with energy 
equivalent to the above energy balance.  
Equations 3-1 and 3-2 show that the 
wavelength of this photon will also be 
determined by the energy transition.  Since the 
energy released in this transition is a 
fundamental property of the element, such x-
rays are called characteristic x-rays. 

It is also possible that the vacancy can 
be filled by an LII electron.  This transition 
gives rise to the K2 photon.  The energy 
difference between the LII and the LIII quantum 
states is very small, and hence the energy and 
wavelength of the K1 and the K2 are very similar.  These two peaks therefore effectively form a 
doublet and are not usually resolvable by most instruments.  Another possibility is that the K-shell 
electron hole is filled by an electron from the M-shell.  This type of transition gives rise to the K 
series of x-ray lines.  There are two permitted lines in this series:  the K1  (K -MIII) and the K3   
(K - MII).  The minimum energy required to produce all K photons (K and K) is called the 
critical excitation energy, KC,K. 

If an L  K transition occurs, an electron moves from L to K filling the hole in K, but at 
the same time creating a hole in L.  This vacancy can be filled by electrons from the M-shell, 
giving rise to the L-series of x-ray lines.  The same thing happens, of course, if an incident beam 
electron ejects an L electron to start with.  As long as an atom contains electrons in the various 
outer shells, if the K-series is excited, then the L and M series will also be excited! 

 

3.2.2 Moseley's law. 

The practice of x-ray analysis and the modern study of x-ray physics rely on Moseley's 
Law with regard to the predictability of x-ray energies as a function of atomic number.  
Historically however, Moseley's Law deals with the energy needed to generate an x-ray; that is, the 
amount needed to remove the electron from the inner atomic shell, Eq, which is related to the 
minimum potential, Vq, required to eject the electron with an electronic charge, e. 

 
Figure 3-2   Schematic drawing illustrating the origin of a K-
shell x-ray. 
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 Moseley's law is a function of atomic 
number, Z, 

 

q q
2

E  =  eV   (Z )   
eq.  3-3 

where the proportionality and the 
“screening constant”, , differ depending 
on which  inner shell (K, L, etc.) is 
ionized.  To a first approximation, the 
relationship also holds for the energy of 
the resultant x-rays because the critical 
energy required for shell ionization is only 
slightly greater. 
 

Figure 3-3 shows very clearly how 
the families of lines disperse with increasing 
atomic number.  That is, with increasing 
atomic number or energy, the lines within a 
particular family spread themselves across 
an increasing range of energy.  In the case 
for lighter elements, most instruments can 
not resolve K1 and K2.  They are distinct 
transitions, but not separable, and are 
commonly notated as K1,2 or just K.  In 
reference tables which list all detectable 
lines from all known sources, these unresolvable lines pairs, or doublets, will be listed separately, 
but the weighted average location for both will also be listed, as if it were one line.  Its relative 
intensity will also exceed the normalized value of 100; for example, in the above case where one 
line has an intensity of 100 and the other a relative value of 50, the combined value will be 150.  
Do not read these intensity values in an absolute or accurate sense, as they are only meant to be a 
rough guide and only in regard to that specific element. Also the relative intensities from one 
family (for example, K series) should not be compared to the relative intensities from another 
family. In absolute intensity, the L series tend to be much less intense than the L series and the M 
series even less intense. This is partially due to the probability of a particular shell being excited in 
an atom with many shells. 

Figure 3-4 illustrates the energy level diagram for gold.  Even with the prohibited 
transitions removed, there are clearly a large number of transitions and distinct x-rays produced.  
As a guide to reading such a diagram, note that the energy for the gold K transition and its 
subsequent x-ray is the difference between the two shells, 8104 minus 3103 or 77keV (the scale 
is logarithmic), and for a lower energy transition, e.g., L2, the energy would be approximately 
1.2104 minus 4102 or 11.6keV.   

 

 
Figure 3-3   Moseley's Law for several x-ray lines and 
absorption edges (from Heinrich, 1981). 



C H A P T E R  T H R E E  
T H E  G E N E R A T I O N  A N D  N A T U R E  O F  X - R A Y S  

 

 
 3-8

Inner shell ionizations can happen by way of two different mechanisms within a target 
being bombarded with energetic electrons.  Primary ionization occurs when an inner shell is 
ionized by a primary electron, and secondary ionization can occur if the inner shell electron is 
ejected by the way of interaction with an x-ray emitted from another atom x-ray.  The latter 
mechanism, more commonly referred to as fluorescence, can only happen if the incoming x-ray is 
of high enough energy.  For example, an Fe K x-ray (6.403keV), or even the more energetic Fe 
K (7.057keV) cannot ionize an Fe K shell (Ec=7.110keV) because the x-ray is always of lower 
energy than the corresponding ionization energy for that respective shell.  Referring to Figure 3-3, 
the critical ionization energy, Ec, required for each shell is read directly off the energy axis, i.e., 
zero energy on that axis refers to an electron "far removed" from the atom's influence.  An example 
of Fe K (Ec=7.110keV) fluorescence would occur in the presence of nickel radiation 
(NiK=7.477keV), e.g., in alloys of steel. 

 

 
Figure 3-4   The atomic energy level diagram for gold.  Lines commonly used for EPMA are weighted bold, and 
the lines that are forbidden are not shown (from Heinrich, 1981). 
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3.2.3  Fluorescence yield 

For each inner-shell ionization, there are 
two possible outcomes: 1) the photon generated 
by the transition escapes from the atom in the 
form of a characteristic x-ray; or 2) the x-ray 
photon is internally consumed by interaction with 
outer-shell electrons.  The latter possibility is 
illustrated in Figure 3-5.  Since the energy of the 
K photon is greater that the critical excitation 
energy for an L-shell electron, the photon may 
eject an L-shell electron.  The energy of the K 
photon is converted into the energy necessary for 
L-ionization plus the kinetic energy of the new 
ejected electron.  Such electrons are called Augér 
electrons after P. Augér who first discovered 
them in 1925. (Pronounced “O-jshay”) 

The fluorescent yield, , is the 
probability that an x-ray will be emitted as 
a result of ionization of a specific shell.  
For a given series of x-ray lines (e.g., the K 
series),   is numerically equal to the ratio 
of K photons escaping from the atom to the 
ratio of original K-shell ionizations.  Since 
the only other possibility is production of 
an augér electron, the sum of the yields of 
x-ray photons and Augér electrons from a 
given atom will be unity (1.0).  The 
fluorescent yield for K lines increases 
monotonically as a function of atomic 
number, and algebraic models accurately 
predict the empirical data.  The fluorescent 
yield increases with atomic number.  As 
examples zinc (Z=30) has K = 0.45, but 
sodium (Z=11) is only 0.02.  In other 
words, of all the K photons produced in sodium, only 2% are able to escape from the atom.  This 
factor means that the sensitivity of the x-ray method decreases for the lighter elements.  The 
decrease, however, is partly compensated by the fact that x-ray production in low-Z elements is 
increased owing to the relatively low critical energies required for K-shell ionizations. 

 
 

Figure 3-5   Schematic  diagram illustrating the internal 
consumption of an x-ray photon and production of a 
Augér  electron. 

 
 

Figure 3-6   Fluorescence yield, , for the K, L and M 
families of x-rays as a function of atomic number (Goldstein 
et al., 1984). 
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Table 2.   X-ray Lines and Transitions2 (Bertin, 1971) 
 

Initial Ionization Level 
 
Transition 
level 

 
K 

 
LI 

 
LII LIII MI MII MIII MIV 

 
MV 

 
LI 

 
 

 
 

 
      

 
 

 
LII 

 
K2 

 
 

 
      

 
 

 
LIII 

 
K1 

 
 

 
      

 
 

 
MI 

 
 

 
 

 
L L     

 
 

 
MII 

 
K3 

 
L4 

 
 L     

 
 

 
MIII 

 
K1 

 
L3 

 
L17 L     

 
 

 
MIV 

 
K5 

 
L10 

 
L1 L2     

 
 

 
MV 

 
K5 

 
L9 

 
 L1     

 
 

 
NI 

 
 

 
 

 
L5 L6     

 
 

 
NII 

 
K2 

 
L2 

 
     M2 

 
 

 
NIII 

 
K2 

 
L3 

 
      

 
M1 

 
NIV 

 
K4 

 
 

 
L1 L15   M2  

 
 

 
NV 

 
K4 

 
 

 
 L2   M1  

 
 

 
NVI 

 
 

 
 

 
L     M1 

 
M2 

 
NVII 

 
 

 
 

 
L      

 
M1 

 
OI 

 
 

 
 

 
L8 L7     

 
 

 
OII 

 
 

 
L4 

 
      

 
 

 
OIII 

 
K2 

 
L4 

 
      

 
 

 
OIV 

 
K1 

 
 

 
L6 L5     

 
 

 
OV 

 
 

 
 

 
 L5     

 
 

                                                 

2 Boxed transitions are x-ray lines commonly used for electron probe microanalysis.  The shaded areas 
indicate violation of the principal quantum number rule, and are strictly forbidden.  Where two transitions 
cannot be resolved (e.g., K1 and K2), both transitions are given the same nomenclature (e.g., K). 
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When we correct raw intensity data from the microprobe to determine weight fractions of 
the elements present, we depend on understanding factors like the fluorescent yield.  When 
you choose to measure an element with its much lower energy L line rather than its K line, 
you exploit what we have been able to model accurately using our knowledge of physics.  On 
the other hand, if you choose a standard that is close in composition to the unknown, then this 
kind of complication is likely to affect both the standard and unknown equally, and contribute 
little to the final analysis.  
 

The fact that characteristic x-ray photons are described by either their energy or their 
wavelength enables us to isolate and count x-rays for a desired element either by discrimination 
baseed on energy or by wavelength.  This fact produces two principal types of x-ray detection 
systems: 

 
WDS: wavelength dispersive detection system in which x-rays from different 

elements are recognized and separated from one another by their wavelength 
using Bragg diffraction. 

 
EDS: energy dispersive detection system in which x-rays from different elements are 

recognized and separated from one another by their characteristic energy using 
a solid state detector and multichannel analyzer. 

 
Some Examples: 
                Wavelength (λ)                       Energy (keV)         
Z Name K1 K2  K2 K K          

 
11 Na 11.909 11.909 11.617 1.041 1.041 
14 Si 7.125 7.128 6.768 1.739 1.838 
26 Fe 1.936 1.940 1.757 6.398 7.057 
92 U 0.126 0.131 0.109 97.143 111.786 
 
 

3.2.4 X-ray line intensities 

Modern x-ray detection systems are not only capable of measuring or separating the x-rays 
from one another by either wavelength or energy, but are also capable of measuring the intensity 
(I) of the characteristic x-rays as well.  Intensities are usually measured as a rate (e.g., the number 
of x-ray photons detected per second) or as the total number of x-ray photons detected in a given 
time period (e.g., number of photons in 10 seconds counting time). These intensities are also 
usually normalized to the electron beam current for quantitative purposes since the number of x-
ray produced is exactly proportional to the number of electron hitting the sample. Corrections for 
detector counting losses (deadtime), background and drift will be discussed later on. 

The relative intensities of lines depend, to a first approximation, on 1) the number of 
electrons available; 2) the selection rules; and 3) the probability of the energy transition producing 
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a given photon.  When a given line in a series is present for an element, all of the permitted lines in 
that series is also present.  This means that the critical excitation energy for that elemental series 
has been exceeded by the electron beam. 

Of prime importance for quantitative analysis is the fact that, at least to a first 
approximation, the intensity of a given x-ray line is proportional to the concentration of the 
element emitting that line in the sample (strictly speaking the number of atoms present).  We can 
then say that the intensity of x-radiation produced by an element i is proportional to the 
concentration of i in the sample. For two specimens bombarded under identical conditions (i.e., 
identical beam voltage and current): 

 

i
1

i
2

i
1

i
2

C

C
   =    

I

I
 

eq.  3-4 

If one of the specimens is a "standard" in which the concentration of element i is precisely 
known, the above equation can be used to obtain a semi-quantitative analysis of i in the other 
(unknown) specimen.  As we will see, however, this is just an approximation — there are many 
factors that affect the intensity of x-radiation other than just concentration of the emitting element. 

From the sort of considerations we 
have just discussed, you might believe that a 
typical x-ray spectrum might appear as in 
the example in figure 3-7.  In this ideal 
example, the individual vertical lines 
correspond to x-ray lines from different 
elements in a multi-element specimen, in 
this case the example might be olivine.  The 
height of the lines is a measure of the x-ray 
emission intensity, and ideally, the height 
should be a measure of the weight percent 
of that element.  In reality, typical x-ray 
spectra appear quite different.  First of all, 
the x-ray lines are really "peaks" and in 
some cases can be quite broad.  Peak 
broadening can result from (1) x-ray lines 
overlapping (e.g., K1 and K2), (2) 
features related to the local atomic 
environment (see below), and from 
resolution limits of the x-ray detection system.  In addition, the above "ideal" example shows the 
x-ray lines to rise from a zero baseline.  In other words, it shows a spectrum with no background 
"noise".  In reality however, background noise does need to be measured and removed.  
Furthermore, x-ray intensity is not an absolute measure of the element’s concentration, and 
inefficiencies for x-ray generation and measurement need to be considered. 

 
 

Figure 3-7   Hypothetical, ideal x-ray spectrum from a multi-
element specimen, (e.g., olivine). 
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Figure 3-8 shows a typical EDS x-ray spectrum for a silicate slag (hydrothermal ore) 
plotted against energy (instead of wavelength).  The figure clearly illustrates that the x-ray lines do 
not rise from a zero-baseline, but are superimposed upon a significant background.  Furthermore, it 
is apparent that the background is not everywhere uniform, but has a definite shape to it.  The 
background radiation is known (1) simply as the background, (2) the continuous x-ray spectrum 
or continuum, or (3) the by German term "bremsstrahlung".  This background radiation results 
from energy released from primary beam electrons that are decelerated by the Coulombic field 
surrounding atoms within the specimen.  The German term translates into "braking radiation" and 
accurately portrays the loss of kinetic energy suffered by incident electrons by the Coulomb fields 
associated with atoms.  As incident electrons are slowed down, they release radiation.  Since the 
degree of "braking" can, in principle, be continuous from zero to complete stoppage, the energy 
released in this process spans the range from zero to that of the primary beam energy.  The 
intensity of the continuous radiation is, however, not constant over the entire energy (or 
wavelength) range, but exhibits a pronounced hump skewed toward lower energies. This is 
because the probability of a primary electron losing most or all of its energy in a single 
bremsstrahlung event is very small. 

 
Figure 3-8   EDS spectrum of a hydrothermal slag specimen. 
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The existence of the continuum means that the number of x-ray photons counted (detected) 
when a spectrometer is "tuned" to a particular x-ray line is really the sum of the characteristic 
photons and the background counts (Imeasured  =  Icharacteristic + Ibkg).  This implies that in order to 
obtain a true measure of the x-rays of interest we must subtract the background "counts" from 
those of the line of interest.  This in turn means that for quantitative analysis we must not only 
measure the "peak" of interest, but also the background on either side of the peak.  Furthermore, 
the detection and measurement of elements present in trace amounts requires that attention be 
given to the peak to background ratio (P/B). 

An approximate expression for the intensity distribution of the continuum as a function of 
wavelength (λ) observed over a sample under electron beam excitation is given by: 

 

cont b o
-1 -1 -1I         i Z(   )     

eq.  3-5 

for which ib is the electron flux in the incident beam ("beam current"), Z is the mass average 
atomic number of the target (approximated by Z = Σ iCiZi where Ci is the mass fraction of 
element i), and λ o is the short wavelength limit of the continuum as determined by Eo: 
 

o = 12,398/Eo 
 

From the above expressions, it can be seen that the background radiation is directly 
proportional to the beam current and to Z.  This has some important implications.  Lets say you are 
interested in analyzing a minor or trace element.  Since this element is present in small amounts, it 
might appear that the obvious thing to do is to increase the beam current so as to increase the 
intensity of x-rays produced by that element.  The problem is that as you increase the beam 
current, you also increase the background, and you may in fact not see an improvement in the 
peak/background ratio.   Counting for longer periods of time may turn out to be a more practical 
solution though normally it is useful to increase the beam current to the maximum level at which 
the samples is not being damaged by the beam.  Peak/background ratios become extremely 
important for trace elements and in defining the lower concentration limit at which elements can be 
measured within specified confidence limits.  This is known as the minimum detection limit  -- a 
subject we will discuss in more detail later. 

 

3.2.5 X-ray Peak Shapes3 and Positions 

As noted above, x-ray peaks always have finite widths attributable to a combination of 
specimen and instrumental characteristics.  Examination of the energies or wavelengths of the K1 

                                                 

3 The term "peak" refers to instrumental inability to measure absolute energies (or wavelength), and, 
indeed, there is a natural distribution about theoretical energies, such that we actually see a distribution 
about the theoretical energy.  "Peak" then refers to the modal energy, and shape refers to the distribution. 
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and K2 lines indicates that it would be virtually impossible to separate them with instrruments of 
typoical resolution..  Hence they effectively form a doublet of finite width.  As atomic number 
increases, the energy separation between the K and K x-rays increases, but for low-Z elements, 
these two may not be completely separable. The K peak may appear as a "shoulder on the high-
energy side of the stronger K peak.  Furthermore, in low-Z elements (especially those in Period 
2) the K-shell electrons may be influenced by nearest-neighbor atoms to which they are bonded.   

When we speak of x-rays emitted, we always speak in terms of quantum-mechanical 
transitions, because it is the transition of an electron from a outer shell to an inner ionized shell 
that is responsible for a given x-ray peak. The x-rays which result from these inner shell 
ionizations are theoretically exact in terms of energy, and are said to be characteristic.  In 
principle, therefore, x-ray line widths and peak shapes ought to be narrow and symmetrical.  
Examination of x-ray spectra, however, shows that high-energy, K peaks (i.e., K x-rays from high-
Z elements) generally are relatively narrow and symmetrical, but those from very light elements 
(Z=16) are often broad, asymmetrical and "lumpy".  A similar phenomenon is observed for the L 
peaks of very high-Z elements.  Although this phenomenon is not completely understood, it is 
clear that part of the issue is that the energy of K-shell electrons in low-Z elements (and of L peaks 
in high-Z elements) is influenced by nearest-neighbor bonding. In other words, the chemical 
environment, on the atomic scale, can affect the x-rays produced by inner-shell ionizations, if the 
inner-shell electrons are influenced by nearest-neighbor interactions. 

Figure 3-9 illustrates this 
phenomenon by showing the energy 
(wavelength) and shape of the carbon 
K peak in different materials.  
Examination of this figure ought to 
convince you that not only is the peak 
shape dependent on the chemical 
environment, but so is the wavelength of 
the maximum intensity.  This means, for 
example, that there exists no unique 
wavelength for CK x-rays corresponding 
to the maximum peak intensity.  It would 
therefore be unwise to use the 
wavelength and intensity of CK x-rays 
determined on diamond to analyze 
carbon in graphite, or carbonates.  We 
raise this issue for several reasons.  First 
of all, you need to anticipate relatively 
broad peaks in the low-energy range of the spectrum and choose the maximum intensity and 
background locations carefully.  Secondly, you should be aware that although it is possible to 
analyze quantitatively for light elements, it is significantly more difficult to do so with the same 
accuracy as higher energy x-rays. This is due not only to the issues of peak shift and shape 
changes, which require quantitative calibration of relative peak and integral intensities, but also 
because of poorly determined corrections for absorption corrections and difficulties with high 

 
 

Figure 3-9   Variation in the area normalized peak shape and 
location for the carbon K line as measured from different 
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order interferences. So although it is possible to invest considerable time and effort in quantitative 
determinations of oxygen in silicates or carbon in carbonates, calculating them on the basis of 
stoichiometry or difference generally suffices. On the other hand, in many materials, the 
stoichiometric ratio of oxygen is variable or it appears as a trace contaminate. In these cases 
oxygen (or other light elements) should always be measured carefully for proper quantitative 
analysis. 

Local bonding effects and peak shifts can be demonstrated especially well in metals versus 
oxides, and have been shown to be a problem in analyzing oxides with metal standards and vice 
versa (Sweatman & Long, 1969). This problem is generally remedied by choosing an appropriate 
standard (i.e., a standard as close as possible to the unknown).  Aluminum, although not as severe 
an example as carbon is definitely influenced by the local chemical environment.  The position and 
shape of the AlKa peak can differ depending on the coordination environment of Al (tetrahedral vs. 
octahedral).  It is therefore prudent to select a standard for Al that has the same coordination as that 
expected in the unknown. 

In some cases this non-characteristic behavior of peak position can be useful and indeed 
informative.  Albee and Chodos (1971), for example have suggested that Fe++/Fe+++ ratios can be 
semi-quantitatively determined with careful characterization of the L line x-rays, although their 
approach is now known to be flawed due to problems with self-absorption of the Fe L x-rays. But 
if self-absorption for L edges is corrected for properly, this variation can be the basis for at least 
semi-quantitative determination of oxidation states. 

 

3.2.6 X-ray absorption. 

In order to detect (measure) an x-ray 
photon after it has been generated by an atom 
(and escapes from the atom) at some finite 
depth within the interaction volume, the x-ray 
must travel through the specimen and 
ultimately exit the surface.  In order to fully 
understand and model the chemical 
composition of a sample with x–ray intensity 
data, it is therefore necessary to know how 
much of the initial x–ray intensity was 
absorbed between having been generated and 
finally exiting the specimen.  Accounting for 
the absorption of x–rays is considered the 
primary correction to raw data, and can be as 
high as 500% for a light element such as fluorine in a silicate mineral.  The absorption correction 
for magnesium or aluminum can be as high as 25%, and for calcium or iron, on the order of 10%.  
Therefore, absorption by the specimen demands respect and understanding; absorption can be 
evaluated only if an accurate model for the x-ray generation volume is calculated.  If the specimen 
is polished flat, the distance for absorption can be determined.  As Figure 3-10 illustrates, the path 

 
 

Figure 3-10  The path length for x-ray absorption from the 
interaction area  through the sample line-of-sight to the 
detector.  The angle between the planar surface and the line 
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length an x-ray must follow through the specimen, and along which absorption can take place, 
involves knowing the take-off angle, . 

 
The mathematical expression that 

accounts for the attenuation of radiation 
traveling through matter, as measured in the 
experiment depicted in figure 3-11, is known as 
Beer's law, where μ is known as the linear 
absorption coefficient.  Beer's equation, 

 
I

I
 =  

0

(- t)e   

eq.  3-6 

 
 is the result of integrating a differential 
equation in which the absorption is proportional to the thickness of the absorber. 
 

dI =  ( I ) dt0  
eq.  3-7 

Notice that the experiment is set up to measure the intensity of the exiting radiation only at 
the initial wavelength (λ) and in the direction of the original radiation, i.e., changes in wavelength 
or direction are also defined as absorption.  The attenuation measured is due to two types of 
processes, true absorption, , and scattering, , such that 

 
    =   +   

eq.  3-8 

The two types of events that absorb x-rays are true or photon absorption, μt, and scattering. 
 The latter is due to the interaction of the electromagnetic wave with the electrons of the atoms.  
The electrons are forced into oscillations by the absorbed x-ray and act as sources for scattered 
waves which can be of the same wavelength as the original wave (coherent or Rayleigh 
scattering), or of longer wavelengths, having given up energy (incoherent or Compton scattering).  
Coherent and incoherent scattering are a function of both the energy of the radiation and the 
binding energy of the electrons in the lattice, i.e., a resonance phenomenon.  For our purposes, the 
scattering processes are insignificant for x-rays with wavelengths greater than 1Å (less than 
12keV), and for absorbers of atomic number greater than 6.  We will therefore focus our attention 
on true photon absorption. 

 
 

Figure 3-11   Beer's law. 
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We are primarily concerned with true or 
photon absorption not only because it is the primary 
mechanism for attenuating our x-ray signal, but also 
because ionization is the primary means by which an 
x–ray is absorbed within the specimen. When an x-
ray is absorbed by photon absorption it generates a 
secondary x-ray from the atom doing the absorption.  
In other words, photon absorption results in the 
emission of another characteristic x–ray by 
fluorescence.  Figure 3-12 demonstrates the 
absorption of Fe K x-rays within a Fe-Cr alloy. Fe 
K x-rays (6.40keV) are sufficiently energetic to 
cause inner-shell ionization of the Cr atoms, thus 
producing Cr K x-rays.  In this alloy, the intensity of 
Fe x-rays is decreased due to absorption whereas the 
intensity of Cr x-rays is enhanced. 

The ability of atoms to attenuate emission of 
x-rays is almost independent of the chemical bonds 
and the structural arrangement of the phase in which 
those atoms are found.  This is in contrast to the absorption spectra for less energetic radiation such 
as infrared and visible light that most definitely depends on bonds and structural features of the 
absorber.  The basic reason for this difference is that most of the attenuation of x-rays involves 
inner-shell electrons of the absorber atoms, and these exist at energy levels that are not much 
affected by bonding and structure.  Consequently, attenuation of x-rays of a given wavelength by 
atoms of a given type depends mostly on the number of atoms "seen" by an x-ray as it travels 
through the absorber. 

Focusing our attention on photon absorption, corrections to raw counts as x-ray photons 
are emitted from the specimen will be a function of ionization of inner atomic shells by the 
characteristic x-ray radiation we are trying to measure.  As defined above, the absorption 
coefficient is usually given with respect to a linear traverse through an absorber.  This is known as 
a linear absorption coefficient. True absorption is the result of a finite number of "encounters", or 
events, along that path; the amount of absorption is therefore dependent on the density of the 
ionization sites.  Since the linear density of atoms along any path in a phase is proportional to the 
bulk density of the phase, the parameter / is a more generally useful one than just . The mass 
absorption coefficient (/) depends on the chemical composition only and is independent of 
structural detail … which is to say, the / for any of the polymorphs of sulphur is the same. 
Whereas the linear coefficient has dimensions of cm-1, the mass coefficient has dimensions of 
cm2/gram.  Beers Law in terms of the mass absorption coefficient is: 

 

 
1

0

Cr

Fe

0 1weight fraction  

Figure 3-12   The fluorescence of Cr K x-rays due to 
absorption of Fe K.
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eq.  3-9  

 
For a multi-element specimen, / is the linear sum of the contributions from its individual 
elements, weighted according to mass concentration: 
 

mass
i

i mass( ) =  C (i, )     

eq.  3-10 

 
where μmass is the mass absorption coefficient μ/ρ and Ci is the weight fraction of the absorber. 
Since these are absorption coefficients normalized to mass, this mass averaging method is not 
only rigorously correct but also convenient for EPMA data recalculations.  From this point 
on, in reference to absorption, we will refer to mass absorption coefficients only, for which its 
symbol will be simply μ rather than μ/ρ. 
 

The mass absorption coefficient can be expressed by the following fit to experimental 
data: 

    (a, ) =  
N
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eq.  3-11 

 
where a refers to some multi-element material; n ranges from 2.5 to 3.0 varying slightly with 
Z and λ; c and c' are constants which also vary a small amount with atomic number and 
wavelength.  The approximation is due to the assumption that atomic weight varies smoothly 
with atomic number, which is neither true nor monotonic. 
 
 

3.2.7 Absorption edges 

Equation 3-11 implies a smooth increase in μ with both Z and λ.  This turns out not to be 
the whole picture as demonstrated in Figure 3-13.  The mass absorption coefficient plotted as a 
function of log wavelength should be a straight line with a slope n.  Although the +4 slope is 
clearly present, superimposed on this trend are abrupt jumps or absorption edges.  The edges seen 
in Figure 3-13 are due to the presence of specific elements. An absorption edge for an element is 
the result of low absorption on one side due to the low probability of ionization with an x-ray with 
too little energy, and high absorption on the other side of the edge because the x-rays at that 
wavelength do have enough energy to be consumed by ionizing the absorber element.  Figure 3-13 
shows K line absorption edges for titanium and aluminum. 
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The line labeled "Ti" corresponds to absorption 
of different wavelengths of x-radiation in a Ti "target". 
 The "points" on the line refer to the specific 
wavelengths of K lines for elements close to Ti in 
atomic number that are absorbed by Ti.  Decreasing 
wavelength corresponds to increasing energy and 
increasing Z of the element producing that 
characteristic wavelength.  Thus, the points on the line 
going away from the Ti-absorption edge toward lower 
wavelengths include V, Cr, Mn, Fe, Co, Ni and Cu, 
respectively.  The wavelength for TiKa corresponds to 
minimum point of the edge. Going away from the edge 
in the low energy direction, we encounter Sc, Ca, K, 
etc.  The edge is due to the fact that x-rays with 
energies less (wavelengths greater) than that required to 
ionize the K-shell of Ti are not greatly absorbed (e.g., 
Ti, Sc, etc.)  On the other hand, VK x-rays have 
sufficient energy to produce TiK transitions, and 
therefore are strongly absorbed.  Observations to note 
include the fact that μ/ρ increases with increasing Z of 
the absorber until the absorption edge effect; μ/ρ 
increases with λ until the absorption edge effect; Ti is 
relatively "transparent" to TiK x-rays;  Ti is relatively 
"opaque" to VK x-rays. 

An absorption edge exists for each possible 
quantum transition.  For the K-series, all of the possible 
transitions are so close in energy that they are 
indistinguishable in terms of absorption edges.  High 
atomic number elements/absorbers, on the other hand 
typically exhibit multiple edges.  Figure 3-14 shows 
the absorption edges for the L and M families of lines 
in gold. 

The important questions to ask with respect to 
absorption are: "How does absorption vary within 
different absorbers for a specific x-ray?", and "How 
does absorption vary for different x-ray wavelengths 
(with respect to Z) within a specific absorber?". Figure 
3-15 addresses these questions by plotting both 
absorption for the SiK x-rays as they travel through 
varying atomic number absorbers, and the absorption 
of various x-rays by a silicon absorber.  It differs from 
Figures 3-13 and 3-14 in that the abscissa is not 
logarithmic, and because wavelength decreases to the 
right with increasing Z.  For the case of absorption of 

 
Figure 3-13   Mass absorption  coefficients for 
aluminum and titanium.  Both represent K shell 
ionization (from Heinrich, 1981). 

 
Figure 3-14   Mass absorption for gold showing 
L and M  shell ionization edges. 
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SiK x-rays, note that absorption is relatively 
high in high-Z absorbers and that the 
absorption decreases with decreasing Z until 
the Si absorption edge.  This steady 
decrease with decreasing Z is that predicted 
by equation 3-11.  The absorption of SiK 
x-rays reaches its minimum value at the 
low-point of the Si absorption edge.  Across 
the Si-absorption edge, the absorption of 
SiK x-rays increases by an order of 
magnitude and has a maximum value for the 
wavelength associated with the AlKa 
transition.  Below the jump, absorption of 
SiK x-rays decreases again with Z as 
predicted by equation 3-11.  In terms of 
other characteristic x-rays being absorbed 
by Si atoms, the trend is one of decreasing 
absorption with increasing Z.  Very low-Z elements are strongly absorbed by Si atoms.  The 
absorption decreases to a minimum value for Si K x-rays and then jumps up by an order of 
magnitude for P.  Thereafter, absorption decreases steadily with increasing number. 

Plots such as Figures 3-13, 3-14 & 3-15 illustrate the basic principles involving absorption. 
 It is important to realize that absorption within a single-element target/absorber will be trivial 
(simply the value for μ in itself).  It is only in multi-element specimens that absorption becomes 
interesting and more difficult to understand and model quantitatively.  Each element present in the 
target will provide one or more absorption edges to the total absorption of the specimen.  The 
degree to which each element's x-rays are absorbed by the multi-element specimen will primarily 
be dependent on the relationship of the energy of an element's characteristic x-rays to an 
absorption edge.  A more realistic example of absorption effects is presented in Figure 3-16 which 
shows how various K x-rays are absorbed within our Kakanui Hornblende reference standard4.  
All K locations are shown for elements heavier than carbon and lighter than zinc.  Each element 
present in this mineral (O, Na, Mg, Al, Si, K, Ca, Ti and Fe) provides at least one absorption edge 
(Fe provides two - the K-edge and an L-edge).  All edges are for ionization of the K shells, except 
for iron, for which the edge due to LIII ionization is also shown.  Notice the extreme range in mass 
absorption coefficients calculated for the x-rays of the elements we would want to analyze in a 
typical hornblende. 

                                                 

4 Figure 16 is a plot of calculated absorption values for all x-rays, 6 Z 30, using Eq. 3-11.  The data 
were taken from Heinrich, 1966.  The absorption edges were plotted by location, for which vertical lines 
were extrapolated and drawn.  Notice that the height of the edge is proportional the amount of the element 
present. 

 
 

Figure 3-15   Absorption as  function of  atomic number  for a 
 specific x-ray wavelength and for a specific absorber. 
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In addition to equation 3-11, calculation of absorption coefficients for an x-ray within a 

multi-element absorber requires incorporation of the absorption edge effects.  These effects include 
the location of the absorption edges within a particular specimen (be it a standard or an unknown) 
and the height of the absorption edge.  The height of the edge is commonly referred to as the 
absorption edge jump ratio, which is defined 
as 

edger  =  max

min




 

eq.  3-12 

where max and min are the mass 
absorption coefficient values above and 
below the absorption edge, i.e., the high 
energy (low wavelength) and low energy 
(high wavelength) sides.  Either the ratio or 
the difference between the two has been 

 
Figure 3-16   Absorption of various x-ray radiation for the Kakanui Hornblende reference standard.  The edges indicate 
actually which elements are present, and the height of the edge being an approximate measure of the element's 
concentration. 

 
Figure 3-17   Absorption edge height and hypothetical K 
shell ionization (not to scale). 
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shown to vary smoothly as a function of atomic number for the pure elements.  Therefore, its 
calculation and scaling with respect to the amount of the element present in a specimen can fairly 
easily be incorporated into a computer program for calculating x-ray intensities corrected for 
absorption.  

Although Equation 3-11 combined with calculated jump ratios can be easily utilized with 
modern software to calculate absorption values, in practice, most x-ray correction programs utilize 
absorption data in the form of a "look-up table".  The reason for this is because absorption is the 
most controversial, as well as the most significant, correction applied to x-ray intensities used for 
quantitative analysis.  Indeed, the most commonly referenced compilation of absorption data is 
titled X-Ray Absorption Uncertainty (Heinrich, 1966)!  Because of absorption uncertainties, most 
data reduction programs provide for the ability to change specific values or to use your own tables. 
 A single computer algorithm doesn't provide for this versatility and flexibility. Our absorption 
coefficient and jump-ratio look-up table incorporates the latest "best values" (or at least the most 
accepted values), but they can be easily changed as new values are published in the literature. 

The final points we wish to make regarding x-ray absorption edges are practical items of 
concern.   In the "bad old days" we used to have to calculate absorption corrections by hand, or 
rely on very crude computer programs.  Nowadays, these calculations, although very rigorous are 
virtually "invisible" to the analyst. The "black box" character of a modern, computer-based 
instrument supposedly "takes care" of all of these absorption effects.  We advise you, however, to 
accept the computer "corrections" with a healthy degree of skepticism. As noted above, absorption 
corrections, especially near the absorption edges are very uncertain. A good analyst will 
therefore be very careful when choosing an analytical line that lies very close to an edge (that is, 
when the ZAF correction is larger than 200%). Secondly, since the bremsstrahlung or background 
radiation is also subjected to absorption, background locations should also be chosen with similar 
care (i.e., never on the other side of the edge with respect to the analytical line of interest. 

 

3.3 X-ray diffraction. 

You are probably already familiar with x-ray diffraction because it is a very important 
analytical technique for crystal lattice determinations.  The technique you studied in your 
mineralogy or chemistry course uses characteristic x-ray radiation of a specific wavelength (e.g., 
Ni Kα) to determine crystal lattice dimensions and structure.  Having measured the lattice 
parameters, the x-ray diffraction analyst can determine the unknown mineral with a database 
listing of d-spacings.  Electron microprobe microanalysis uses x-ray diffraction in a different 
sense.  All concepts remain the same, however in the case for EPMA, a known crystal d-spacing is 
used to measure an unknown x-ray wavelength, and is the primary means for x-ray spectrometry 
(WDS). 

In terms of the wave concept applied to photons, x-rays are specularly reflected from a 
crystal's internal structure only if the elastically scattered (reflected) wave front of photons are in 
phase, i.e., do not destructively interfere with each other.  This is the case for gratings as well as 
crystals only if parallel paths of incoming and reflected photons retain the phase relationship by 
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traveling path length differences equal to some multiple of the wavelength.  For radiation of 
specific wavelengths (x-rays), specular radiation only occurs at a specific angle relative to the 
crystal's reflective layer, so termed the two-theta angle, 2, where theta is the entrance angle equal 
to the emergence angle. 

 
The resultant relationship, as you are probably aware is Bragg's law, 

 
n  =  2d   sin  

eq.  3-13 

where d is the lattice spacing, and n is some integer.  You might want to re-familiarize 
yourself with this relationship by reviewing a mineralogy or physics text.  The most general 
derivation is given below, but presumes an existing understanding. 

 
X-ray diffraction as applied to the determination of unknown minerals uses x-radiation 

from either nickel or copper, i.e., hard radiation.  The point is, if known inorganic crystals are to be 
used for x-ray wavelength determinations, then the applicability is only for x-rays with short 
wavelengths.  Because of the need for long wavelength determinations, pseudo-crystals with large 
d-spacings were developed.  These materials are manufactured by attaching heavy atoms, e.g., 
lead, to large very molecules, e.g., sterates, and folding the sheet as many as a hundred times.  
Whereas these materials do have a d-spacing, unlike crystals they do not have any repeatable 
structure within the layer.  Although introductory texts never implied any requirement for structure 
within the reflecting layer, you might still appreciate derivation for Bragg's law for the most 
general case.  Referring to figure 3-18, for an incident wave front and emergent wave front from a 
material at depth spacing d, the path CB + BD must be equal to some multiple of the wavelength, 
in accordance with the phase relationship rule established earlier.  In this most general case we are 

 

 

Figure 3-18   Illustrating Bragg's Law and the geometry for the most general case. 
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going to allow the point of scattering off the layer at depth to be some arbitrary horizontal distance, 
u, from that of the layer above, thereby removing dependence on placement of lateral scattering 
centers.  From this we have 

 
n = CB + BD = 2(EB) - EC - DF 

 
if EC = EA cos = (d cot - u) cos 

 
and DF = FA cos = (d cot + u) cos 

 
n = CB + BD =  2d /sin - (d cot - u + d cot + u) cos 

 
= 2d /sin - 2d cot cos 

 
= 2d sin-1(1 - cos2) 

 
= 2d sin 

 
For precise measurement of x-rays, the Bragg equation needs to be corrected for the 

refractive index for x-rays in the crystal, r 

 

n  =  2d   1  
( 1   )r

2 



sin
sin






  

eq.  3-14 

In the case for pseudo-crystals, and also in the more modern case of multi-layer 
dispersive elements (LDEs), the refractive index correction can become significant.  
However, many instruments incorporate such a factor when installing crystals for a 
spectrometer.  The correction is usually of the form 
 

n  =  2d    1  
k

n
 2 sin 





  

eq.  3-15 

where the d-spacing and k-factor are known.  For example, for the PET (pentaerythritol) 
crystal, d is 8.75Å and k is 0.000144. 
 

An analyst who uses x-ray diffraction will need to anticipate the ramifications of n>1 when 
analyzing his or her spectrum which represents d-spacings for an unknown crystal.  For example, 
for n=1, he/she would see a major peak for a specific d-spacing, and would need to anticipate the 
presence of another for n=2, for which there would be a peak indicative of half the real d-spacing. 

As you might expect, there exist similar ramifications for the microprobe analyst.  For 
example, if he/she were to scan the wavelength range of the crystal spectrometer; for n=1, the 
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spectra might show a peak indicative of an element, and other artifact peaks as well for n=2, 3, ... . 
 This is not the usual use of the EPMA spectrometer, however.  Elements are usually anticipated, 
to which the spectrometers are specifically tuned.  Even for a spectrometer which is tuned to an 
n=1 x-ray wavelength another n>1 problem can exist.  For example, consider the case for chromite 
(chromium-iron oxide).  The Al K line has a wavelength of 8.340Å, and the Cr K line, 2.085Å.  
The problem here is that when the crystal spectrometer is tuned to AlK(n=1), it is also tuned to 
CrK(n=4).  And, of course, spectra locations for n1 need be considered as possible interferences 
with background measurements. 

 

3.4 Summary 

Many of the concepts introduced in this chapter, and the previous, will be taken up again 
when we take a better look at quantifying the elements responsible for the x-ray emission.  
However, before we leave the subject of the nature of x-rays as they apply to EPMA, and discuss 
the instrument itself, you should insure you have a basic grasp of specimen interaction, x-ray 
generation and x-ray absorption.  A good understanding will provide a good basis for analytical 
strategy. 

For further general reading we might suggest Heinrich (1981) and Bertin (1971).  
Sweatman and Long (1969) is an excellent paper with specific regard to mineralogic 
specimens. 
 


